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Summary

Monte Carlo (MC) methods estimate high-dimensional integrals by computing sample averages
at independent and identically distributed (1ID) random points. Quasi-Monte Carlo (QMC)
methods replace 11D samples with low-discrepancy (LD) sequences which more uniformly cover
the integration domain, leading to faster convergence and reduced computational requirements.
Figure 1 visualizes IID and LD sequences.

QMCPy (https://gmcsoftware.github.io/QMCSoftware) (Choi et al., 2026) is our Python package
for high-dimensional numerical integration using MC and QMC methods, collectively “(Q)MC."
Its object-oriented design enables researchers to easily implement novel (Q)MC algorithms.
The framework offers user-friendly APls, diverse (Q)MC algorithms, adaptive error estimation
techniques, and integration with scientific libraries following reproducible research practices
(Choi et al., 2022; Choi, 2014). Compared to previous versions, QMCPy v2.2 (which is easily
installed with pip install -U gmcpy) includes

= improved documentation,
= strengthened tests and demos, and
= expanded support for randomized LD sequences.
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Figure 1: An IID sequence with gaps and clusters alongside LD sequences with more uniform coverage.
Each sequence contains purple stars (initial 32 points), green triangles (next 32), and blue circles
(subsequent 64).

Statement of Need

(Q)MC methods are essential for computational finance (Giles & Waterhouse, 2009; Lemieux,
2004; X. Wang & Sloan, 2005; Zhang et al., 2021), uncertainty quantification (Kaarnioja et al.,
2021; Marzouk et al., 2016; Parno et al., 2014, 2021; Seelinger et al., 2023), machine learning
(Chen et al., 2018; Dick & Feischl, 2021), and physics (Albert & Barabdasi, 2002; Bernhard
et al., 2015; Landau & Binder, 2014). While (Q)MC methods are well established (Dick et
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al., 2013; Dick & Pillichshammer, 2010), practical implementation demands numerical and
algorithmic expertise. QMCPy follows MATLAB's Guaranteed Automatic Integration Library
(GAIL) (Choi et al., 2021; Tong et al., 2022) in consolidating a broad range of cutting-edge
(Q)MC algorithms into a unified framework (Choi et al., 2022, 2024; Hickernell et al., 2026;
Sorokin, 2025; Sorokin & Rathinavel, 2022). QMCPy features

= intuitive APls for (Q)MC components,

= flexible integrations with NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), and
PyTorch (Paszke et al., 2019),

= robust and adaptive sampling with theoretically grounded error estimation, and

= extensible components enabling researchers to implement and test new algorithms.

While popular modules like scipy.stats.gmc (Roy et al., 2023) and torch.quasirandom
(Paszke et al., 2019) provide basic (Q)MC sequences such as Sobol’ and Halton, QMCPy provides
(Q)MC researchers and practitioners an end-to-end framework with additional capabilities to
enable state-of-the-art (Q)MC techniques. Advanced features unique to QMCPy include

= customizable LD sequences with diverse randomization techniques,

= efficient generators of LD sequences with multiple independent randomizations,
= automatic variable transformations for (Q)MC compatibility, and

= rigorous adaptive error estimation algorithms.

Components

(Q)MC methods approximate the multivariate integral
p=Elo(T)) = [ gt)MOds, T @)
T

where g is the integrand and ) is the probability density of a random variable T' whose
distribution we call the true measure. To accommodate LD samples (approximately uniform
on [0,1]%), a transformation 1) is performed to rewrite y as

p=BUX)) = [ feodx X ~ua) )

[0,1)¢

If T ~ (X), then f=go1.

(Q)MC methods estimate the population mean f in (2) via the sample mean

S|

= Zf(Xz) (3)
i=1

MC methods use IID X, ..., X,, and have error |fi — p| like @(n~'/2) (Niederreiter, 1978).
QMC methods choose dependent LD nodes that fill [0,1]¢ more evenly, i.e., the discrepancy
between the discrete distribution of X, ..., X, and the uniform distribution is small. QMC
methods can achieve errors like O(n~1+°) where § > 0 is arbitrarily small (Hickernell & Wang,
2002; X. Wang, 2003). A key feature of QMCPy is stopping criteria that automatically determine
n so | — fi| < e for a user-specified tolerance & > 0, deterministically or with high probability.

QMCPy contains four main abstract classes:
1. Discrete Distributions generate 11D or randomized LD sequences (Sorokin, 2025) including

= Lattices with random shifts (Coveyou & MacPherson, 1967; Cranley & Patterson,
1976; Hickernell et al., 2005; Richtmyer, 1951; Y. Wang & Hickernell, 2002).

= Digital Sequences (including Sobol" and Faure constructions) with digital shifts
(DS), linear matrix scrambling (LMS), or nested uniform scrambling (NUS, also
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called Owen scrambling) (Dick, 2011; Dick & Pillichshammer, 2005; Dick &
Pillichshammer, 2010; Matousek, 1998; Niederreiter, 1987, 1992; Owen, 1995,
2003; Sobol’, 1967). Higher-order digital sequences are available to enable QMC
convergence like (9(n’°‘+5) when f has a degrees of smoothness (Dick, 2011).

= Halton Sequences with digital permutations, DS, LMS, or NUS (Halton, 1960;
Matousek, 1998; Morokoff & Caflisch, 1994; Owen & Pan, 2024; X. Wang &
Hickernell, 2000).

Internally, QMCPy’s LD generators call our C package QMCToolsCL (Sorokin, 2026). We
also integrate with the LDData repository (Sorokin et al., 2025) which collects lattice
generating vectors and digital sequence generating matrices from Kuo's websites (Cools
et al., 2006; Joe & Kuo, 2003, 2010; Joe & Kuo, 2008; Kuo, 2007; Nuyens & Cools,
2006), the Magic Point Shop (Kuo & Nuyens, 2016), and LatNet Builder (L'Ecuyer
et al., 2022).

. True Measures come with default transformations 1) satisfying ¥»(X) ~ T. For example,

if T~ N(m,X = AAT) is a d-dimensional Gaussian, then ¥(X) = A®}(X) + m
where &1 is the inverse Gaussian distribution function applied elementwise. We support
the broad range of measures included in scipy.stats (Virtanen et al., 2020).

. Integrands g, given a transformation 1), automatically set f = g o 1) so that u =

E[g(T)] = E[f(X)].

. Stopping Criteria (SC) adaptively increase the sample size n until (Q)MC estimates

satisfy user-defined error tolerances (Hickernell, Choi, et al., 2018; Owen, 2024; Tong et
al., 2022). SC include guaranteed MC algorithms (Hickernell et al., 2013) and QMC
algorithms based on:

= multiple randomizations of LD sequences (L'Ecuyer et al., 2023),

= quickly tracking the decay of Fourier coefficients (Ding et al., 2020; Hickernell,
Jiménez Rugama, et al., 2018; Hickernell & Jiménez Rugama, 2016; Jiménez
Rugama & Hickernell, 2016), or

= fast Bayesian cubature (Rathinavel, 2019; Rathinavel & Hickernell, 2019, 2022).

QMCPy is also capable of simultaneously approximating functions of multiple integrands
(Sorokin & Rathinavel, 2022), and we are actively expanding support for multilevel
(Q)MC algorithms following Julia's MultilevelEstimators.jl (Robbe, 2024).

Figure 2 compares (Q)MC SC for Asian option pricing with 100 independent trials per
error tolerance €. The left and middle plots show median lines and shaded regions for
10%-90% quantiles. While MC SC require n = ()(1/£%) samples (and time), QMC SC
require only n = O(1/e). (Q)MC SC consistently meet tolerances, with the right plot
showing distributions of errors for a single error tolerance.
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Figure 2: (Q)MC SC for Asian option pricing.
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